Initializing...
Performance and Training Settings:
Test Accuracy: 0.6857142448425293
Test Loss: 0.5906731486320496
Precision: 0.680921052631579
Recall: 0.6833333333333333
F1 Score: 0.6815550041356493
AUC: 0.78
Per Class Precision: 0.625,0.7368421052631579
Per Class Recall: 0.6666666666666666,0.7
Per Class F1 Score: 0.6451612903225806,0.717948717948718
Per Class AUC: 0.78,0.78
Validation Accuracy: 0.7428570985794067
Validation Loss: 0.5281034111976624
Training Accuracy: 0.7952218651771545
Training Loss: 0.4382565915584564
Class Counts (n): 156, 207
Outcome: salvage, major&minor amp
Number of Epochs: 32
Initial Learning Rate: 0.0001
Batch Size: 16
Image Augmentation: Flip Horizontal
Confusion Matrix:
Training and Validation Logs:
Support this research. Web3 Wallet of the Author:
Copied to clipboard!
This machine learning model could be
downloaded
and retrained by adding new data
here
List of ML Models
Deploy Your Own ML Model
Don't have an ML model? Build it here