Initializing...
Performance and Training Settings:
Test Accuracy: 0.7999999523162842
Test Loss: 0.473177045583725
Precision: 0.7951388888888888
Recall: 0.7833333333333333
F1 Score: 0.7877758913412563
AUC: 0.8466666666666666
Per Class Precision: 0.8125,0.7777777777777778
Per Class Recall: 0.8666666666666667,0.7
Per Class F1 Score: 0.8387096774193549,0.7368421052631577
Per Class AUC: 0.8466666666666667,0.8466666666666665
Validation Accuracy: 0.8399999737739563
Validation Loss: 0.362686425447464
Training Accuracy: 0.8749999403953552
Training Loss: 0.3143550157546997
Class Counts (n): 156, 102
Outcome: salvage, major amp
Number of Epochs: 50
Initial Learning Rate: 0.0001
Batch Size: 16
Image Augmentation: Flip Horizontal
Confusion Matrix:
Training and Validation Logs:
Support this research. Web3 Wallet of the Author:
Copied to clipboard!
This machine learning model could be
downloaded
and retrained by adding new data
here
List of ML Models
Deploy Your Own ML Model
Don't have an ML model? Build it here