Initializing...
Performance and Training Settings:
Test Accuracy: 0.7199999690055847
Test Loss: 0.819691002368927
Precision: 0.7182539682539683
Recall: 0.6833333333333333
F1 Score: 0.6880570409982174
AUC: 0.8733333333333333
Per Class Precision: 0.7142857142857143,0.7222222222222222
Per Class Recall: 0.5,0.8666666666666667
Per Class F1 Score: 0.588235294117647,0.7878787878787877
Per Class AUC: 0.8733333333333333,0.8733333333333333
Validation Accuracy: 0.7999999523162842
Validation Loss: 0.7166253328323364
Training Accuracy: 0.9423076510429382
Training Loss: 0.12805907428264618
Class Counts (n): 102, 156
Outcome: major amp, salvage
Number of Epochs: 11
Initial Learning Rate: 0.001
Batch Size: 16
Image Augmentation: Flip Horizontal
Confusion Matrix:
Training and Validation Logs:
Support this research. Web3 Wallet of the Author:
Copied to clipboard!
This machine learning model could be
downloaded
and retrained by adding new data
here
List of ML Models
Deploy Your Own ML Model
Don't have an ML model? Build it here