Initializing...
Performance and Training Settings:
Test Accuracy: 0.6857142448425293
Test Loss: 0.8391323685646057
Precision: 0.6879084967320261
Recall: 0.6916666666666667
F1 Score: 0.6846846846846847
AUC: 0.8300000000000001
Per Class Precision: 0.7647058823529411,0.6111111111111112
Per Class Recall: 0.65,0.7333333333333333
Per Class F1 Score: 0.7027027027027027,0.6666666666666666
Per Class AUC: 0.83,0.8300000000000002
Validation Accuracy: 0.7714285254478455
Validation Loss: 0.6916291117668152
Training Accuracy: 0.9522184729576111
Training Loss: 0.13838882744312286
Class Counts (n): 207, 156
Outcome: major&minor amp, salvage
Number of Epochs: 17
Initial Learning Rate: 0.001
Batch Size: 16
Image Augmentation: Flip Horizontal
Confusion Matrix:
Training and Validation Logs:
Support this research. Web3 Wallet of the Author:
Copied to clipboard!
This machine learning model could be
downloaded
and retrained by adding new data
here
List of ML Models
Deploy Your Own ML Model
Don't have an ML model? Build it here