Human-centered Evaluation of AI and ML Projects

Authors

DOI:

https://doi.org/10.62487/ypqhkt57

Keywords:

Evaluation of AI, Human-centered AI

Abstract

With this editorial, we inaugurate the next issue of our journal, which is dedicated to showcasing AI, ML, and E-Health projects within real healthcare environments. 

Author Biographies

  • Yury Rusinovich

    ML in Health Science, Leipzig, Germany

  • Alexander Vareiko

    ML in Health Science, Warsaw, Poland. 

  • Nikita Shestak

    ML in Health Science, Munich, Germany

References

ML in Health Science. Repository "Web3 Certificate: Human-Centered Project". https://mlhs.ink/Certificate/. Accessed March 31, 2024.

European Parliamentary Research Service. Metaverse. Opportunities, risks and policy implications. https://www.europarl.europa.eu/cmsdata/268589/eprs-briefing-metaverse_EN.pdf. Accessed March 10, 2024.

World Health Organisation, ed. Ethics and governance of artificial intelligence for health. Guidance on large multi-modal models; 2024.

European Parliamentary Research Service. Artificial intelligence act. https://www.europarl.europa.eu/RegData/etudes/BRIE/2021/698792/EPRS_BRI(2021)698792_EN.pdf.

Nichol AA, Sankar PL, Halley MC, Federico CA, Cho MK. Developer Perspectives on Potential Harms of Machine Learning Predictive Analytics in Health Care: Qualitative Analysis. J Med Internet Res. 2023;25:e47609. doi:10.2196/47609. DOI: https://doi.org/10.2196/47609

Sartor G. The impact of the General Data Protection Regulation (GDPR) on artificial intelligence: Study. Brussels: European Parliament; 2020.

Rusinovich Y, Rusinovich A, Rusinovich V. Do You Agree with AI Making Decisions About Your Treatment? A Comparative Survey of IT and Healthcare Practitioners. Web3MLHS. 2024;1(1). doi:10.62487/m67cnn54. DOI: https://doi.org/10.62487/m67cnn54

National Telecommunications and Information Administration. AI Accountability Policy Report. https://www.ntia.gov/sites/default/files/publications/ntia-ai-report-final.pdf. Accessed April 12, 2024.

Collins GS, Reitsma JB, Altman DG, Moons KGM. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ. 2015;350:g7594. doi:10.1136/bmj.g7594. DOI: https://doi.org/10.1136/bmj.g7594

Lekadir K, Osuala R, Gallin C, et al. FUTURE-AI: Guiding Principles and Consensus Recommendations for Trustworthy Artificial Intelligence in Medical Imaging; 2021.

Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CON-SORT-AI extension. Nat Med. 2020;26(9):1364-1374. doi:10.1038/s41591-020-1034-x. DOI: https://doi.org/10.1136/bmj.m3164

Mongan J, Moy L, Kahn CE. Checklist for Artificial Intelligence in Medical Imaging (CLAIM): A Guide for Authors and Reviewers. Radiol Artif Intell. 2020;2(2):e200029. doi:10.1148/ryai.2020200029. DOI: https://doi.org/10.1148/ryai.2020200029

Wagner MW, Ertl-Wagner BB. Accuracy of Information and References Using ChatGPT-3 for Retrieval of Clinical Radiological Information. Can Assoc Radiol J. 2024;75(1):69-73. doi:10.1177/08465371231171125. DOI: https://doi.org/10.1177/08465371231171125

Sharun K, Banu SA, Pawde AM, et al. ChatGPT and artificial hallucinations in stem cell research: assessing the accuracy of generated references - a preliminary study. Ann Med Surg (Lond). 2023;85(10):5275-5278. doi:10.1097/MS9.0000000000001228. DOI: https://doi.org/10.1097/MS9.0000000000001228

Athaluri SA, Manthena SV, Kesapragada VSRKM, Yarlagadda V, Dave T, Duddumpudi RTS. Exploring the Boundaries of Reality: Investigating the Phenomenon of Artificial Intelligence Hallucination in Scientific Writing Through ChatGPT References. Cureus. 2023;15(4):e37432. doi:10.7759/cureus.37432. DOI: https://doi.org/10.7759/cureus.37432

Kwong JCC, Khondker A, Lajkosz K, et al. APPRAISE-AI Tool for Quantitative Evaluation of AI Studies for Clinical Decision Support. JAMA Netw Open. 2023;6(9):e2335377. doi:10.1001/jamanetworkopen.2023.35377. DOI: https://doi.org/10.1001/jamanetworkopen.2023.35377

Antoniou T, Mamdani M. Evaluation of machine learning solutions in medicine. CMAJ. 2021;193(36):E1425-E1429. doi:10.1503/cmaj.210036. DOI: https://doi.org/10.1503/cmaj.210036

Rusinovich Y, Rusinovich V. Do You Consent to the Use of Your Biological Data for Training ML and AI Models? Online Survey Targeting Clinicians and Researchers. Web3MLHS. 2024;1(1). doi:10.62487/yyx99243. DOI: https://doi.org/10.62487/yyx99243

Aggarwal R, Farag S, Martin G, Ashrafian H, Darzi A. Patient Perceptions on Data Sharing and Applying Artificial Intelligence to Health Care Data: Cross-sectional Survey. J Med Internet Res. 2021;23(8):e26162. doi:10.2196/26162. DOI: https://doi.org/10.2196/26162

Moorcraft SY, Marriott C, Peckitt C, et al. Patients' willingness to participate in clinical trials and their views on aspects of cancer research: results of a prospective patient survey. Trials. 2016;17:17. doi:10.1186/s13063-015-1105-3. DOI: https://doi.org/10.1186/s13063-015-1105-3

Parry MW, Markowitz JS, Nordberg CM, Patel A, Bronson WH, DelSole EM. Patient Perspectives on Artificial Intelligence in Healthcare Decision Making: A Multi-Center Comparative Study. Indian J Orthop. 2023;57(5):653-665. doi:10.1007/s43465-023-00845-2. DOI: https://doi.org/10.1007/s43465-023-00845-2

Richardson JP, Smith C, Curtis S, et al. Patient apprehensions about the use of artificial intelligence in healthcare. NPJ Digit Med. 2021;4(1):140. doi:10.1038/s41746-021-00509-1. DOI: https://doi.org/10.1038/s41746-021-00509-1

Rusinovich Y, Rusinovich V. Confounders in Predictive Medical Models: The Role of Religion. Web3MLHS. 2024;1(1). doi:10.62487/2rm68r13. DOI: https://doi.org/10.62487/2rm68r13

Rusinovich Y, Rusinovich V. Confounders in Predictive Medical Models: Roles of Nationality and Immigrant Status. Web3MLHS. 2024;1(1). doi:10.62487/vc54ms96. DOI: https://doi.org/10.62487/vc54ms96

Agency for Healthcare Research and Quality. Impact of Healthcare Algorithms on Racial and Ethnic Disparities in Health and Healthcare. https://effectivehealthcare.ahrq.gov/sites/default/files/related_files/cer-268-racial-disparities-health-healthcare.pdf.

Schlundt DG, Franklin MD, Patel K, et al. Religious affiliation, health behaviors and outcomes: Nashville REACH 2010. Am J Health Behav. 2008;32(6):714-724. doi:10.5555/ajhb.2008.32.6.714. DOI: https://doi.org/10.5993/AJHB.32.6.15

Cary MP, Zink A, Wei S, et al. Mitigating Racial And Ethnic Bias And Advancing Health Equity In Clinical Algorithms: A Scoping Review. Health Aff (Millwood). 2023;42(10):1359-1368. doi:10.1377/hlthaff.2023.00553. DOI: https://doi.org/10.1377/hlthaff.2023.00553

Shanklin R, Samorani M, Harris S, Santoro MA. Ethical Redress of Racial Inequities in AI: Lessons from Decoupling Machine Learning from Optimization in Medical Appointment Scheduling. Philos Technol. 2022;35(4):96. doi:10.1007/s13347-022-00590-8. DOI: https://doi.org/10.1007/s13347-022-00590-8

Allen A, Mataraso S, Siefkas A, et al. A Racially Unbiased, Machine Learning Approach to Prediction of Mortality: Algorithm Development Study. JMIR Public Health Surveill. 2020;6(4):e22400. doi:10.2196/22400. DOI: https://doi.org/10.2196/22400

Andrade C. Confounding. Indian J Psychiatry. 2007;49(2):129-131. doi:10.4103/0019-5545.33263. DOI: https://doi.org/10.4103/0019-5545.33263

Alsubaie MK, Dolezal M, Sheikh IS, et al. Religious coping, perceived discrimination, and posttraumatic growth in an international sample of forcibly displaced Muslims. Ment Health Relig Cult. 2021;24(9):976-992. doi:10.1080/13674676.2021.1973978. DOI: https://doi.org/10.1080/13674676.2021.1973978

Scheitle CP, Frost J, Ecklund EH. The Association between Religious Discrimination and Health: Disaggregating by Types of Discrimination Experiences, Religious Tradition, and Forms of Health. Scientific Study of Religion. 2023;62(4):845-868. doi:10.1111/jssr.12871. DOI: https://doi.org/10.1111/jssr.12871

Jordanova V, Crawford MJ, McManus S, Bebbington P, Brugha T. Religious discrimination and common mental disorders in England: a nationally representative population-based study. Soc Psychiatry Psychiatr Epi-demiol. 2015;50(11):1723-1729. doi:10.1007/s00127-015-1110-6. DOI: https://doi.org/10.1007/s00127-015-1110-6

Baqai B, Azam L, Davila O, Murrar S, Padela AI. Religious Identity Discrimination in the Physician Workforce: Insights from Two National Studies of Muslim Clinicians in the US. J Gen Intern Med. 2023;38(5):1167-1174. doi:10.1007/s11606-022-07923-5. DOI: https://doi.org/10.1007/s11606-022-07923-5

Bender M, van Osch Y, He J, Güngör D, Eldja A. The role of perceived discrimination in linking religious practices and well-being: A study among Muslim Afghan refugees in the Netherlands. Int J Psychol. 2022;57(4):445-455. doi:10.1002/ijop.12854. DOI: https://doi.org/10.1002/ijop.12854

Wu Z, Schimmele CM. Perceived religious discrimination and mental health. Ethn Health. 2021;26(7):963-980. doi:10.1080/13557858.2019.1620176. DOI: https://doi.org/10.1080/13557858.2019.1620176

Sharif MZ, Truong M, Alam O, et al. The association between experiences of religious discrimination, social-emotional and sleep outcomes among youth in Australia. SSM Popul Health. 2021;15:100883. doi:10.1016/j.ssmph.2021.100883. DOI: https://doi.org/10.1016/j.ssmph.2021.100883

An introduction to the UNESCO Recommendation on Open Science; 2022.

Shneiderman B. Human-Centered AI: Oxford University PressOxford; 2022. DOI: https://doi.org/10.1093/oso/9780192845290.001.0001

Gholamzadeh Nikjoo R, Partovi Y, Joudyian N. Involvement of charities in Iran's health care system: a qualitative study on problems and executive/legal/supportive requirements. BMC Health Serv Res. 2021;21(1):181. doi:10.1186/s12913-021-06187-9. DOI: https://doi.org/10.1186/s12913-021-06187-9

Tu HT, Reschovsky JD. Assessments of medical care by enrollees in for-profit and nonprofit health maintenance organizations. N Engl J Med. 2002;346(17):1288-1293. doi:10.1056/NEJMsa011250. DOI: https://doi.org/10.1056/NEJMsa011250

Schlesinger M, Quon N, Wynia M, Cummins D, Gray B. Profit-seeking, corporate control, and the trustworthiness of health care organizations: assessments of health plan performance by their affiliated physicians. Health Serv Res. 2005;40(3):605-645. doi:10.1111/j.1475-6773.2005.00377.x. DOI: https://doi.org/10.1111/j.1475-6773.2005.00377.x

Zare H, Eisenberg M, Anderson G. Charity Care and Community Benefit in Non-Profit Hospitals: Definition and Requirements. Inquiry. 2021;58:469580211028180. doi:10.1177/00469580211028180. DOI: https://doi.org/10.1177/00469580211028180

editorial

Published

15.02.2024

How to Cite

Rusinovich, Y., Vareiko, A., & Shestak, N. (2024). Human-centered Evaluation of AI and ML Projects. Web3 Journal: ML in Health Science, 1(2). https://doi.org/10.62487/ypqhkt57