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Abstract. 

Aim: This basic research study aimed to assess the ability of Web AI Vision to classify anatomical movement patterns in 

real-time B-mode ultrasound scans for controlling a virtual bionic limb. Methods: A MobileNetV2 model, implemented 

via the TensorFlow.js library, was used for transfer learning and feature extraction from 400 B-mode ultrasound images 

of the distal forearm of one individual participant, corresponding to four different hand positions: 100 images of a fist 

position, 100 images of thumb palmar abduction, 100 images of a fist with an extended forefinger, and 100 images of 

an open palm. Results: After 32 epochs of training with a learning rate of 0.001 and a batch size of 16, the model 

achieved 100% validation accuracy, 100% test accuracy, and a test loss (crossentropy) of 0.0067 in differentiating 

ultrasound patterns associated with specific hand positions. During manual testing with 40 ultrasound images excluded 

from training, validation, and testing, the AI was able to correctly predict the hand position in all 40 cases (100%), with 

a mean predicted probability of 98.9% (SD ± 0.6). When tested with B-mode cine loops and live ultrasound scanning, 

the model successfully performed real-time predictions with a 20ms interval between predictions, achieving 50 

predictions per second. Conclusion: This study demonstrated the ability of Web AI Vision to classify anatomical 

movement patterns in real-time B-mode ultrasound scans for controlling a virtual bionic limb. Such ultrasound- and 

Web AI-powered bionic limbs can be easily and automatically retrained and recalibrated in a privacy-safe manner on 

the client side, within a web environment, and without extensive computational costs. Using the same ultrasound 

scanner that controls the limb, patients can efficiently adjust the Web AI Vision model with new B-mode scans as 

needed, without relying on external services. The advantages of this combination warrant further research into AI-

powered muscle movement analysis and the utilization of ultrasound-powered Web AI in rehabilitation medicine, 

neuromuscular disease management, and advanced prosthetic control for amputees. 
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Background: 

Limb loss or dysfunction is a critical condition for both 

clinicians and patients, driving scientists and engineers 

to develop effective replacement solutions. Such 

replacements can take the form of classical prosthetics 

or synthetic limb substitutes with enhanced functional 

capabilities. As health science advances, prosthetics 

are continuously evolving into bionics - a field that 

seeks to integrate mechanical functions with biological 

entities by mimicking native physiological processes1. 
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B-Mode Ultrasound for Bionics 

Current research in prosthetic limb technology focuses 

on enhancing prostheses with various biological 

feedback mechanisms, primarily electromyography, 

ultrasound, and custom sensors, to convert biological 

signals into mechanical movements. Each of these 

methods has its own advantages and limitations. 

Among them, B-mode (brightness mode) ultrasound 

has been investigated for over 20 years2, evolving from 

basic parametric still-image analysis3 to advanced 

convolutional neural networks capable of analyzing 

real-time B-mode ultrasound scans to predict 

prosthetic limb movements4.  

 

B-mode (brightness mode) ultrasound is a well-

established and widely used imaging technique in both 

clinical practice and medical research, with a history 

spanning over 80 years5. It produces two-dimensional 

grayscale images based on the intensity of reflected 

high-frequency sound waves (Figure 1). These waves 

are emitted by a specialized sensor called an 

ultrasound transducer and travel through the body. As 

they encounter different tissues, they are reflected 

back to the transducer at varying intensities, 

depending on the acoustic properties of the tissues. 

The returning echoes are then processed to generate 

cross-sectional images, where brighter areas 

correspond to stronger reflections (e.g., bone or 

fibrous tissue) and darker areas represent weaker 

reflections (e.g., muscle or fluid). This non-invasive 

method provides real-time anatomical information and 

is particularly valuable for musculoskeletal, vascular, 

and soft tissue assessment. 

 

The primary advantage of B-mode ultrasound in 

bionics is its ability to provide detailed real-time 

anatomical insights into limb movements6. However, 

its main limitation is the large volume of information it 

generates, which requires significant preprocessing 

compared to electromyography or custom sensors. 

This computational burden necessitates machine 

learning algorithms to operate more efficiently than 

electromyography or custom sensors in order to 

achieve low-latency conversion of real-time ultrasound 

images into bionic control signals, enabling real-time 

prosthetic movements. 

 

 

Figure 1a: Ultrasound transducer placed over the 

forearm, capturing a real-time anatomical grayscale 

image. Downward arrow: emitted sound wave; upward 

arrow (toward the transducer): returning echo used for 

image formation. 

 

Despite advancements in transforming B-mode 

ultrasound scans into movement signals for bionic 

limbs, individual calibration remains a challenge for B-

mode ultrasound-powered bionic devices4. 

Physiological variations - such as sensor placement 

changes or fluid shifts in the limb - can reduce 

prediction accuracy, necessitating frequent retraining 

or recalibration of the machine learning model. 

Traditional deep learning models, such as custom 

convolutional neural networks, require significant 

computational resources and time to train and adapt 

to individual needs, making these devices highly 

customized and reliant on external services4. 
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Figure 1b: B-mode ultrasound scan of the anterior 

forearm, bilinearly resized to 224×224 pixels for model 

training and prediction. Labeled anatomical structures: 

U – Ulna, R – Radius, PQ – Musculus pronator 

quadratus, DP – Flexor digitorum profundus, PL – 

Flexor pollicis longus, DS – Flexor digitorum 

superficialis, CU – Flexor carpi ulnaris. 

 

Web AI for Bionics 

Web AI provides a low-computational-cost solution for 

developing and deploying machine learning models in a 

web-based environment. Powered by frameworks like 

TensorFlow.js7, Web AI enables on-device AI 

processing, eliminating the need for third-party data 

transfers. In image classification tasks, it leverages 

transfer learning and pre-trained models to minimize 

computational requirements, allowing real-time image 

classification with low latency on a wide range of client 

devices, from desktops to smartphones. 

 

Recent research8–14 has demonstrated the validity of 

transfer learning-powered AI models for medical image 

classification, showing high accuracy even with 

relatively small datasets. This suggests that Web AI 

could be a scalable and efficient alternative for real-

time ultrasound-based bionic limb control.  

 

Hypothesis 

AI Vision, with its pixel-by-pixel memory from training 

datasets, can objectively assess complex ultrasound 

images with high accuracy. Specifically, ultrasound AI 

Vision can analyze musculoskeletal properties of a 

limb, extract ultrasonic patterns associated with 

specific hand positions, and predict the bionic limb's 

movement based on previously unseen ultrasound 

data4. However, the high level of customization 

required for these models, which must be repeatedly 

trained and retrained to meet individual needs, makes 

ultrasound-powered bionic limbs both costly and 

computationally demanding4. Web AI has the potential 

to overcome this limitation by enabling fully 

automated training and retraining of B-mode 

ultrasound models without human intervention in 

feature extraction or model updates, entirely on the 

client side and without requiring extensive 

computational power.  

 

Aim 

This study aimed to assess the ability of Web AI Vision 

to classify anatomical movement patterns in real-time 

B-mode ultrasound scans for controlling a virtual bionic 

limb.  

 

Material and Methods 

This study was designed as basic research and involved 

data collection, preprocessing, model development, 

and testing. 

 

Data Collection 

The dataset consisted of still ultrasound images and 

cine loops of the distal forearm from a single research 

participant - the author (YR). The ultrasound images 

were acquired following previously described 

sonoanatomical protocols for this region15. Grayscale 

ultrasound imaging was performed in axial view, 

assessing the following anatomic landmarks from 

bottom to top (Figure 1): 

- Ulna 

- Radius 

- Musculus pronator quadratus 

- Flexor digitorum profundus 

- Flexor pollicis longus 

- Flexor digitorum superficialis 

- Flexor carpi ulnaris 
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A linear GE 9L transducer (LOGIQ E9) was mounted on 

the ultrasound scanner, facing upward, while the left 

arm of the research participant was placed on top of it. 

This non-fixed transducer setup introduced additional 

movements, simulating real-life instability and 

challenging the Web AI model's ability to perform 

under dynamic sensor conditions (Figure 2). “Small 

parts” presets were used with a depth setting of 3 cm 

for the entire imaging session. A total of 400 still 

images were collected for training, 40 still images were 

reserved for manual testing, and 4 cine loops were 

used for real-time manual testing, with equal 

distribution among the four hand positions: 

1. Fist position 

2. Palmar abduction of the thumb 

3. Fist with an extended forefinger 

4. Extended palm 

Additionally, the model was tested in live scanning by 

capturing real-time ultrasound video and transmitting 

it directly to the video classifier. 

 

Data Preprocessing 

All images were manually cropped to remove artifacts, 

retaining only the grayscale ultrasound image of the 

forearm. Each image was automatically resized to 

224×224 pixels using bilinear interpolation during input 

for model training and prediction. 

 

To ensure consistent input scaling, pixel values were 

normalized by dividing all values by 255. 

 

 

 

 

A. Extended Thumb Position: Ultrasound shows contracted flexor digitorum profundus and flexor digitorum 

superficialis, appearing as hyperechoic tendons, while the relaxed flexor pollicis longus is visualized as a hypoechoic 

muscle. 
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B. Extended Forefinger Position: Ultrasound shows partially relaxed flexor digitorum profundus and flexor digitorum 

superficialis, appearing as a mix of hypoechoic muscle and hyperechoic tendons, while the contracted flexor pollicis 

longus is visualized as a predominantly hyperechoic structure with a remaining hypoechoic muscle component 

 

 

C. Open Palm Position: Ultrasound shows relaxed flexor digitorum profundus, flexor digitorum superficialis, and 

flexor pollicis longus, all visualized as predominantly hypoechoic muscles. 

 



 
6 05.04.2025 Original Article. Bionic Hand Control with Ultrasound Web AI Vision. Y Rusinovich. V Rusinovich. M. Doss 

 

D. Fist Position: Ultrasound shows contracted flexor digitorum profundus, flexor digitorum superficialis, and flexor 

pollicis longus, all visualized as predominantly hyperechoic tendons or contracted hyperechoic muscles. 

 

Figure 2: Real-time predictions made by the model using a previously unseen B-mode cine loops of the forearm. 

 

 

AI vision Model Development 

The full MobileNetV216 layers model was used for 

transfer learning and implemented via the 

TensorFlow.js7 library. MobileNetV2 was chosen for its 

efficiency and ability to perform well with smaller 

datasets while still achieving high accuracy in image 

classification. Its lightweight architecture enables 

faster processing without compromising accuracy, 

making it particularly suitable for medical image 

analysis. The model’s performance has been validated 

in previous medical research8–14. Additionally, this 

approach allowed the model to be trained and 

deployed directly on the client side, ensuring that no 

data was transferred to third-party servers, thereby 

maintaining complete data privacy. 

 

We used MobileNetV2’s global average pooling layer 

for feature extraction, then appended a custom 

multilayer perceptron ((dense layers of 1024, 512, 256, 

and 128 units) with ReLU activations, batch 

normalization, and dropout to prevent overfitting. The 

final layer employs softmax for multi-class (or binary 

softmax for two-class) classification, with categorical or 

binary cross-entropy selected automatically based on 

the number of classes. 

 A standard dataset split was applied: 

- 80% for training, 

- 10% for validation, 

- 10% for testing. 

The validation dataset was used to monitor cross-

entropy loss and accuracy during training. An 

automatic early stopping mechanism halted training if 

no improvement was observed after 10 epochs. The 

test dataset was used for final model evaluation, 

assessing: accuracy, loss, precision, recall, ROC AUC, 

confusion matrix. 

 

The model was trained with the following preset 

hyperparameters:  

- Batch size: 16 

- Initial learning rate: 0.001 
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- Learning rate scheduler: Reduced learning rate by 

5% per epoch 

Model training, validation, and testing were performed 

on the “ML in Health Science” platform using the 

Image Classifier17 (version 2.25) and Video Classifier18 

(version 1.0) applications. 

 

Manual Test 

To further evaluate real-time performance, 40 

randomly selected sonograms (10% of the dataset), 

excluded from training, validation, and testing, along 

with four cine loops and real-time ultrasound scans 

were used for manual testing. 

 

Statistical analysis 

Numerical data collection and statistical analysis were 

performed using Microsoft Excel (Office 2016, USA). 

 

Results 

Validation and Test 

Early stopping was triggered after 32 epochs when the 

model achieved a test accuracy of 100% and a test loss 

(crossentropy) of 0.0067. The total training time, 

excluding image upload, was under 1 minute on an HP 

Pavilion x360 i5 laptop, which lacks a dedicated GPU 

and relies on integrated graphics. 

Table 1 presents the performance metrics of the 

model, while Figures 3 and 4 show the confusion 

matrix, accuracy per epoch, and loss per epoch. 

The model achieved a test accuracy of 100%, with no 

misclassifications in the previously unseen test dataset. 

 

Manual Test 

The trained model was evaluated using 40 

independent sonograms, with the predicted hand 

positions distributed as follows: 

- 10 thumb images: mean probability: 99.9% (SD ± 

0.0) 

- 10 forefinger images: mean probability: 92.0% (SD 

± 8.6) 

- 10 palm images: mean probability: 98.6% (SD ± 

1.2) 

- 10 fist images: mean probability: 99.9% (SD ± 0.0) 

 

 

 

 

Table 1: Performance metrics of the model.  

Metrics Thumb Forefinger Open Palm Fist Macro 

Test Precision 100% 100% 100% 100% 100% 

Test Recall 100% 100% 100% 100% 100% 

Test F1 score 100% 100% 100% 100% 100% 

Test ROC AUC 100% 100% 100% 100% 100% 

Training Accuracy     100% 

Training Loss     0.0049 

Validation Accuracy     100% 

Validation Loss     0.0087 

Test Accuracy     100% 

Test Loss     0.0067 
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Figure 3: Confusion matrix of the trained model. 

 

 

Figure 4: Accuracy and loss per epoch during model 

training. 

 

The model correctly classified all 40 cases, with 39 

predictions exceeding 99.9% probability and only one 

open palm case at 95% probability. 

 

When tested with B-mode cine loops and live 

ultrasound scanning, the model successfully performed 

real-time predictions with a 20 ms interval between 

predictions, achieving 50 predictions per second on the 

same device that was used for model training - Figure 

2. 

 

Discussion 

This study demonstrates the ability of Web AI Vision to 

identify anatomic patterns associated with predefined 

hand positions using grayscale ultrasound images of 

the distal anterior forearm. The model successfully 

performed real-time classification, accurately 

predicting hand positions based on previously unseen 

sonograms, with no misclassifications. 

 

Practical standpoint 

B-mode ultrasound, enhanced by transfer learning and 

deployed as a Web AI model, has the potential to serve 

as a valuable tool for guiding prosthetic limbs and 

exoskeletons. Unlike traditional sensor-based systems 

such as electromyography or A-mode ultrasound, B-

mode ultrasound provides a real-time anatomical 

assessment, offering significantly more detailed and 

dynamic information about limb movement. 

 

By leveraging pretrained image classification models, 

the AI model can transfer prior knowledge from 

general-purpose datasets to the B-mode ultrasound 

domain, allowing for the development of a new model 

with minimal computational resources. This transfer 

learning approach does not require extensive 

computing power and can be executed in a web-based 

environment. Web AI image classification models can 

achieve high accuracy with relatively small datasets of 

B-mode images. Moreover, training and predictions 

can be performed entirely on the client side, meaning 

they can run on any device with web browser 

capabilities, including smartphones and tablets18. This 

ability to operate with low computational costs allows 

the same ultrasound scanner that controls the limb to 

be used for real-time model retraining.  

 

Patients can adjust and personalize their model by 

retraining it with new B-mode scans directly on their 

own device (smartphone or laptop), without requiring 

external computational resources or third-party 

services18. This approach makes the system not only 

cost-effective but also completely privacy-safe - an 

increasingly important factor given both official and 

unofficial recommendations regarding the ethical use 

of AI in healthcare. Ensuring on-device data processing 

aligns with emerging regulations and best practices for 

maintaining patient confidentiality and data 

sovereignty in AI-driven medical applications19 - Figure 

5.
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Figure 5: Flowchart illustrating the utilization of B-mode ultrasound and Web AI Vision for controlling bionic limbs. 

 

The combination of B-mode ultrasound and Web AI-

based transfer learning algorithms has the potential to 

revolutionize bionics and limb prosthetics, enabling 

patients not only to control their bionic limb but also to 

autonomously adjust and optimize it according to their 

individual needs and changing conditions.  

 

Limitations 

Despite its promising potential, this approach has 

several limitations: 

1. Inter-Individual Variability and Limited Dataset: 

The model was trained on a single participant due 

to the highly individualized nature of B-mode 

ultrasound anatomy, which can vary significantly 

between individuals—based on factors such as 

age, gender, hydration status, muscle mass, and 

underlying conditions—as well as within the same 

individual over time. This inherent variability limits 

the generalizability of the model and makes 

extrapolation to other users challenging. 

Consequently, the dataset was intentionally kept 

limited to test whether meaningful classification 

could still be achieved under realistic, 

individualized conditions. Despite this constraint, 

the study demonstrated that accurate model 

performance is feasible using a small, personalized 

dataset, highlighting the potential of Web AI to 

enable client-side model training and retraining. 

This approach supports real-time personalization 

without the need for external services or extensive 

computational resources, and warrants further 

investigation into its usability by non-expert 

patients. 

2. Healthy limb participant: As this was a basic 

research study, the model was trained using data 

from a healthy individual. Therefore, extrapolating 

the results to amputees and patients with 

musculoskeletal disorders should be done with 

caution. Nevertheless, the study demonstrates the 

feasibility of the method and warrants further 

research on specific patient cohorts. 

3. Virtual bionic hand: This study demonstrated the 

feasibility of using Web AI and B-mode ultrasound 

to guide a virtual bionic hand. However, the use of 

a virtual model may not fully represent real-world 

performance due to potential differences in 

Real-time B-mode 
ultrasound scanning

Scan capture and 
transfer to the user’s 
device (smartphone, 

desktop)

Real-time processing by 
the Web AI Vision 

model

On-demand automatic 
retraining of the model 

on the user's device

Transmission of the 
predicted signal to the 

bionic limb

User feedback loop for 
model refinement
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latency, mechanical response, and integration 

challenges. Additionally, this limitation makes it 

difficult to directly compare the proposed 

approach with currently established alternatives 

such as electromyography, A-mode ultrasound, 

and custom sensor systems. Further studies are 

required to evaluate the practical application of 

this method in controlling physical prosthetic or 

bionic limbs in real-time clinical scenarios, as well 

as to perform head-to-head comparisons with 

existing control modalities in terms of accuracy, 

latency, usability, and adaptability. 

4. Ultrasound Image Acquisition Challenges: The 

effectiveness of the model depends on the quality 

of ultrasound images. This study used a 

professional ultrasound device, which may not 

reflect the imaging capabilities of currently 

available small portable ultrasound systems. 

Further research is needed to evaluate the 

feasibility of using low-power portable ultrasound 

devices for this application. 

5. Holistic Image Classification Approach: This study 

employs a holistic image classification approach, 

which treats each ultrasound scan as a single input 

rather than analyzing specific anatomical regions. 

While complex image segmentation and region-

specific recognition could potentially improve 

model accuracy, identifying the most relevant 

anatomic patterns remains a challenge. 

Additionally, segmentation-based approaches 

require longer training times and higher 

computational resources, limiting their feasibility 

in low-power Web AI environments. 

6. Effects of Image Resizing on Model Performance: 

Image resizing is necessary to standardize input 

dimensions, but it may affect the model’s 

predictive accuracy. Proper image preprocessing 

techniques must be optimized for both training 

and real-time predictions to ensure model 

consistency. 

 

Future Research for Real-World Implementation 

Despite the promising results of this basic research 

study, further investigation is essential to enable the 

translation of this approach into real-life and clinical 

settings. Key areas for future research include: 

- Application of this method to physical bionic and 

prosthetic limbs to assess real-time functional 

integration and latency. 

- Utilization of portable and low-cost ultrasound 

devices to evaluate feasibility in non-specialized or 

home environments. 

- Assessment of user interaction and model 

retraining by individuals without advanced 

expertise in computer science or medicine, to 

ensure accessibility and usability across patient 

populations. 

  

Conclusion 

This study demonstrated the ability of Web AI Vision to 

classify anatomical movement patterns in real-time B-

mode ultrasound scans for controlling a virtual bionic 

limb. Such ultrasound- and Web AI-powered bionic 

limbs can be easily and automatically retrained and 

recalibrated in a privacy-safe manner on the client 

side, within a web environment, and without extensive 

computational costs. Using the same ultrasound 

scanner that controls the limb, patients can efficiently 

adjust the Web AI Vision model with new B-mode 

scans as needed, without relying on external services. 

 

The advantages of this combination warrant further 

research into AI-powered muscle movement analysis 

and the utilization of ultrasound-powered Web AI in 

rehabilitation medicine, neuromuscular disease 

management, and advanced prosthetic control for 

amputees. 
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