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Abstract 

A key element of morphological assessment in prostate cancer (PCa) diagnostics is the Gleason score, which is based on 

the architecture of tumor growth in biopsy or prostatectomy samples. During this process, biopsies from the prostate's 

pathological areas are evaluated to identify the most common and severe architectural patterns (referred to as Gleason 

patterns), each of which is assigned a score in the Gleason grading system. The resulting total score serves as a critical 

predictor for disease progression and metastasis. 

This research focuses on enhancing the efficiency of morphological examination in PCa by utilizing automatic segmenta-

tion of Gleason patterns in whole slide images (WSI) in *.svs format, with 40x magnification and an average spatial reso-

lution of 0.258 microns per pixel. Segmentation was performed using a neural network with a SegFormer architecture, 

supplemented by an EdgeNeXt (small variant) subnet. The proposed solution successfully identified Gleason patterns of 

grades 3, 4, and 5. The best model performance for detecting combined Gleason patterns 3, 4, 5, and 4, 5 was achieved 

with input images sized 512x512 (tile size) and a batch size of 8, resulting in an F-score of 0.835 and 0.769, respectively. 
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Introduction 

Prostate cancer (PCa) is the second most commonly di-

agnosed cancer globally and the fifth leading cause of 

cancer-related deaths among men. In 48 countries, PCa 

is the leading cause of mortality among male cancer pa-

tients1. Given the global aging population, it is expected 

that the burden of PCa will continue to increase. More-

over, advanced age is not the only factor contributing to 

the growing problem. Studies conducted in various 

countries have identified new risk factors for PCa, in-

cluding obesity, diabetes mellitus2,3, dietary habits, and 

vitamin E supplements4. 

As a result, the development of diagnostic and treat-

ment methods for PCa is an urgent issue that requires 

appropriate action. Basic PCa diagnostics include digital 

rectal examination (DRE), serum prostate-specific anti-

gen (PSA) measurement, and transrectal ultrasound 

(TRUS). PSA screening has contributed to a more than 

50% reduction in prostate cancer mortality5; however, it 

has also led to the significant issue of overdiagnosis and 

overtreatment of non-aggressive PCa6. Consequently, 

the focus has shifted toward preferential diagnosis and 

treatment of aggressive PCa. 
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Currently, the primary method for diagnosing prostate 

cancer is histomorphological evaluation of prostate bi-

opsies7,8. A key component of morphological assess-

ment is tumor differentiation using the Gleason grading 

system, which is based on the architectural models of 

tumor growth. The Gleason score is also used for subse-

quent ISUP (International Society of Urological 

Pathologists) classification9,10, which provides more ac-

curate stratification of prostate tumors and helps re-

duce the frequency of active radical treatments in pa-

tients with clinically insignificant PCa.  

 

Tumor Malignancy Assessment 

The Gleason score is a method for evaluating the malig-

nancy of cancerous tumors and predicting their aggres-

siveness. Developed by Donald Gleason in 1966, this 

system is based on the histological evaluation of the ar-

chitecture of tumor tissues11. The primary principle of 

the Gleason score involves classifying tumor glands ac-

cording to their level of differentiation: from well-differ-

entiated, resembling normal tissue, to poorly differenti-

ated, which significantly differs from normal cells. In this 

method, the pathologist selects the two most prevalent 

histological patterns of cellular structure in the sample 

and assigns each a score from 1 to 5. Each score repre-

sents a specific cellular structure as follows12: 

1. The gland cells are small and well-defined; 

2. The gland cells are spaced far apart; 

3. The gland cells have an irregular shape; 

4. Few cells have a regular shape, forming a neo-

plastic mass; 

5. Absence of glandular cells. 

The sum of these two scores forms the so-called 

'Gleason score.' According to the decision of the Inter-

national Society of Urological Pathologists (ISUP, 2014 

conference), which was included in the WHO recom-

mendations (2016), Gleason score calculations for pros-

tate cancer diagnostics should utilize grades 3-5. The 

first two grades were excluded10,13 for several reasons. 

First, scores of 4 are extremely rare in surgical materials. 

Second, in the modern interpretation, the first-grade 

pattern corresponds to benign hyperplasia and should 

not be classified as adenocarcinoma. Third, the second-

grade pattern is considered a secondary manifestation 

of the third-grade pattern, rather than an independent 

pathology. As a result, the Gleason score can range from 

6 to 10. A higher score indicates a more aggressive and 

less differentiated tumor, correlating with a poorer 

prognosis for the patient. The current version of the 

Gleason score not only describes the degree of cellular 

deviation of the cancerous tumor from healthy glandu-

lar epithelium but also categorizes patients into five 

prognostic groups based on expected five-year recur-

rence-free survival. For instance, group one has a total 

Gleason score of 6 (3+3) with a survival probability of 

97%, while group five has a total score of 9–10 with a 

survival probability of 49%. 

Despite the high level of algorithmization in tumor clas-

sification using the Gleason score, significant fluctua-

tions in specialist conclusions are sometimes ob-

served14–16. This is largely due to the considerable vari-

ety of histological structures, even within the same tu-

mor. Variability in assessment also depends on errors in 

tissue sampling by urologists and the limited amount of 

material. The qualifications and even the personality 

traits of the specialist, which can lead to either optimis-

tic or pessimistic prognoses, also significantly influence 

the results. Therefore, prostate cancer diagnostics, in-

cluding the use of the Gleason score, requires the devel-

opment of new reliable and reproducible methods that 

minimize the variability in conclusions. 

 

Improvement of the Tumor Pathohistological Assess-

ment 

As mentioned above, the Gleason scoring system under-

went significant changes in the 2000s12. In addition to 

increasing the number of biopsy sites, the original as-

sessment templates were revised and expanded. New 

methods for processing biopsy material were intro-

duced to improve the discrimination between different 

tissue types. Additionally, it was suggested to account 

for the ratio of tumor to normal tissue in biopsy sam-

ples, along with other parameters, to enhance diagnos-

tic and prognostic accuracy. 

One of the most promising approaches to addressing 

these issues has been the application of artificial intelli-

gence (AI). Research in this area is actively being con-

ducted by centers in various countries17–20. In particular, 
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deep learning neural networks are being used for the 

automatic identification and grading of Gleason pat-

terns with promising results. Modern machine learning 

algorithms and convolutional neural networks (CNNs) 

allow for the standardization of the diagnostic process, 

improving objectivity, accuracy, and reproducibility.  

 

Aim 

The aim of this work was to develop and implement a 

neural network-based algorithm for detecting Gleason 

patterns in whole-slide histological images. 

 

Application of Neural Network Models 

CNNs are a key tool in solving practical tasks in the field 

of computer vision, as the convolution operator allows 

for the sequential extraction and processing of features 

at various levels: from basic (lines, points) to complex 

(object contours). In digital form, these features repre-

sent multidimensional vectors used for image classifica-

tion. These accumulated features can be transformed 

into segmented areas of the original image through re-

verse transformation. This approach, using neural net-

works for classification and segmentation, is known as 

the Encoder-Decoder architecture. In general, models of 

this architecture consist of two parts (Figure 1). 

 

 

Figure 1: General scheme of the model architecture 

 

The Encoder performs the function of reducing the di-

mensionality of input data by extracting the most signif-

icant features. In the context of histological images, the 

encoder typically consists of several convolutional lay-

ers that sequentially process the input images, extract-

ing high-level features. These features include the tex-

tural and architectural characteristics of tissues, which 

are crucial for differentiating between malignant and 

normal cells. 

After the encoding stage, the compressed data repre-

sentation is passed to the Decoder, which consists of 

several layers that perform the reverse of the convolu-

tion, restoring the data to its original resolution or to a 

format required for further analysis. During the decod-

ing process, the neural network learns to reconstruct 

the features and structure of the original images. 

In the context of prostate cancer diagnostics, such mod-

els can be used to analyze images obtained from biopsy 

samples. Histological images are inherently complex, 

with a high level of intra-class variability, making their 

analysis labor-intensive for specialists. Models of this ar-

chitecture can improve automation of the analysis due 

to their ability to account for spatial and structural de-

pendencies in the data. The primary representative of 

this family of models is U-Net. 

 

U-Net and SegFormer Models for Histological Image 

Segmentation 

U-Net is one of the most popular architectures for image 

segmentation tasks, including medical imaging, due to 

its ability to efficiently capture both local and global con-

texts. The core of U-Net is a symmetrical structure con-

sisting of an encoder and decoder, which allows the 

model to restore spatial information at various resolu-

tion levels. U-Net demonstrates high accuracy and sta-

bility when working with limited datasets, making it a 

suitable choice for the initial stages of research. 

However, with the emergence of transformers, which 

initially demonstrated excellent results in text-pro-

cessing tasks, their potential has also been successfully 

adapted for image analysis. The SegFormer model21 

combines the advantages of transformers and multi-

layer perceptrons (MLPs), enabling it to capture long-

range dependencies and the global context of images. 

This is particularly useful for histological images, where 

it is important to consider the relationships between dif-

ferent regions. SegFormer's hierarchical encoder struc-

ture also allows the model to handle variations in reso-

lution and object scales, making it flexible and adaptable 

for image segmentation. 

Moreover, SegFormer uses a simple MLP-based decoder 

that effectively aggregates information from different 

levels, combining local and global attention. This simpli-

fies the architecture and reduces computational costs, 

which is a significant advantage when working with 
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large volumes of data. Several studies have shown that 

SegFormer outperforms U-Net in segmentation accu-

racy across various datasets, including medical images22. 

The use of SegFormer, in combination with different en-

coders such as EdgeNeXt or ResNet, has improved the 

accuracy of cancer segmentation in histological images, 

significantly reduced the number of model parameters, 

and increased processing speed compared to U-Net-

based architectures. 

 

Challenges in Analyzing Prostate Histological Images 

The analysis of histological images using AI has been 

previously discussed in the literature, highlighting the 

following key issues and challenges23: 

1. Lack of Data: One of the main problems in the 

field of medical image analysis is access to high-

quality and diverse datasets. Successful train-

ing of neural networks requires a large volume 

of annotated data, which can be quite limited 

in the medical field. 

2. Data Heterogeneity: Histological images can 

vary significantly depending on the equipment 

used, sample preparation methods, and evalu-

ation criteria. Even within the same literature 

source, there may be articles with different 

classifications of tissue patterns24,25. These pol-

ymorphisms and other factors can create chal-

lenges in training universal models. 

3. Data Size: Medical histological images tend to 

be very large. It is not uncommon to encounter 

images larger than 50,000 x 50,000 pixels, 

while deep neural network training typically 

uses lower resolutions due to limited computa-

tional resources. Splitting images into 

patches—dividing them into smaller frag-

ments—can help address this issue, but it may 

lead to a loss of accuracy or even data loss. 

Nevertheless, models trained on patches are 

generally preferred over those trained on full 

images26. 

Thus, when choosing a neural network architec-

ture, it is important to consider all of the aforemen-

tioned challenges to achieve the highest possible 

accuracy. 

Material and Methods 

Tested Variants of Neural Network Architectures 

In this study, a series of experiments were conducted to 

improve the neural network architecture for analyzing 

PCa histological images. The research object consisted 

of whole-slide histological images27, WSI scans of pros-

tate cancer patients in *.svs format with 40x magnifica-

tion and an average spatial resolution of 0.258 microns 

per pixel. The biopsy material, stained with hematoxylin 

and eosin, included both healthy samples and samples 

with pathological areas of varying Gleason score malig-

nancy. The full dataset comprised 113 scans, annotated 

by three expert pathologists. Due to the very high reso-

lution of the WSI scans, a tiled segmentation method 

was applied28. This approach allowed for efficient pro-

cessing of large data volumes by dividing the scans into 

smaller fragments to improve the quality and accuracy 

of neural network training. ImageNet standardization 

was applied to each tile. 

Various architecture combinations were tested, with 

encoders including VGG16, ResNetV2_50x1_bit29, Mit-

b0, and EdgeNeXt-small30, and decoders such as U-

Net31,32 and SegFormer. The models were developed us-

ing the PyTorch and timm libraries. 

Since the number of tiles containing cancerous cells was 

significantly smaller than those with healthy cells, there 

was a strong class imbalance. To address this during 

neural network training, a specific ratio of tiles with and 

without cancer was used in each batch. 

To increase the likelihood of including challenging non-

cancerous tiles (where the model often made mistakes) 

in the training set, a "definitely not cancer" class was 

added. Tiles containing this class were prioritized during 

training. However, this approach did not improve model 

metrics, so the "definitely not cancer" class was not 

used in further training. 

Additionally, earlier versions of the trained models fre-

quently misclassified healthy areas with seminal vesicles 

and nerve bundles as cancerous. As a result, the corre-

sponding classes, "seminal vesicles" and "nerve bun-

dles," were added to the training data. However, the in-

creased frequency of tiles with these classes did not lead 

to significant metric improvement. Nonetheless, the la-
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beling and inclusion of these classes should be consid-

ered in future model training, as novice specialists fre-

quently misclassify these areas. 

The algorithm for determining tissue in the original im-

ages, which initially incorporated brightness threshold-

ing of the image channels' dispersion, was improved by 

using a more complex saturation channel threshold in 

the HSV color space, followed by Gaussian blurring and 

hole filling. 

To improve classification accuracy, an optimal binary 

mask threshold was calculated on validation data, en-

suring balanced values between precision and recall. 

Additionally, experiments were conducted with dynam-

ically cropping tiles from the original *.svs images, as 

well as cropping mask tiles from full images in *.png for-

mat. However, tests showed that this approach was 

slower, so the decision was made to load pre-cropped 

tiles from disk. 

To ensure high accuracy in detecting pathological areas 

at the periphery of the tile images, a segmentation pro-

cess with four steps of tile shifts was implemented: 1) 

no shift, 2) half the tile width shift, 3) half the tile height 

shift, and 4) diagonal shift. Each shift, with weighted 

masks where the central areas of the tiles had the max-

imum weight, decreasing toward the periphery, was 

then integrated into a single mask. This approach pro-

vides high segmentation accuracy across the entire im-

age and prevents the appearance of artifacts at the tile 

borders, which are typical in the single-pass method. 

Further testing of the models on whole-slide images 

with four passes showed that increasing the input tile 

size from 256x256 to 512x512 improved segmentation 

accuracy and increased the overall scan processing 

speed. 

 

Comparison of Tested Neural Networks 

The tested model architectures were compared across 

several parameters: 

1. Number of parameters: This includes all the 

weights and biases used in the model. This 

metric influences the amount of memory con-

sumed by the model. 

2. F1-score: This is a combined metric that ac-

counts for both precision and recall. It is used 

to assess the quality of binary classification, es-

pecially in cases where classes are imbalanced: 

𝐹 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×  𝑟𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 

Where precision is the ratio of correctly classi-

fied positive examples to the total positive ex-

amples identified by the model, and recall is 

the ratio of correctly classified positive exam-

ples to the total true positive examples in the 

data. 

3. Batches per second (validation): This refers to 

the number of data samples the model can 

process per second. This metric is calculated 

during the network's application to the valida-

tion set and reflects the network's efficiency 

and performance. 

Table 1 presents a summary of the comparison of the 

tested models 

 

Results 

To solve the segmentation tasks for Gleason grades of 

varying malignancy, two neural networks were trained 

using the SegFormer architecture, modified by integrat-

ing the EdgeNeXt model (small variant) as a backbone 

(encoder). The first neural network identifies tissue re-

gions with combined Gleason patterns of grades 3, 4, 

and 5, while the second identifies regions with com-

bined patterns of grades 4 and 5. This approach aimed 

to increase the number of cancerous training tiles and 

thus improve the results. Training was performed using 

tiles sized 512x512 pixels, extracted from WSI scans at a 

reduced magnification of 5x. Only tiles where biological 

tissue occupied more than 25% of the area were used 

for training. A data batch with a specific ratio of tiles was 

created: one tile with cancerous cells for every three 

tiles without. The total number of tiles used to train the 

networks was 15,522, with 94 WSI scans. A total of 19 

WSI scans were used for the validation set.
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Table 1: Results of the Tested Models 

 

The best accuracy was achieved with input image sizes 

of 512x512 (corresponding to the tile size) and a batch 

size of 8, resulting in an F-score of 0.835 and 0.769 on 

the validation set for models identifying Gleason pat-

terns of grades 3, 4, 5, and 4, 5, respectively. The models 

were trained for 10 epochs using the AdamW optimizer 

and a loss function that combined Focal Loss and 

Tversky Loss (parameters alpha=0.25, beta=0.75). Train-

ing was performed on a GeForce GTX 1080 Ti GPU, with 

each model's training taking approximately one hour. 

Figure 2 shows a fragment of a WSI scan comparing the 

results of the model identifying combined Gleason pat-

terns of grades 3, 4, and 5 in multi-pass segmentation 

mode with the annotations made by specialists. 

The average segmentation time for Gleason patterns 3 

and 4 on an image with a resolution of 80,000x57,000, 

using the multi-pass mode, was approximately 58 sec-

onds on a GeForce GTX 1080 Ti (about 112 seconds for 

an image with a resolution of 66,000x124,000). The fast 

single-pass segmentation mode processed images four 

times faster but resulted in lower accuracy at the tile 

borders. 

 

 

 

Figure 2: Comparison of the final model's results on a 

fragment of a WSI scan: green indicates areas where the 

annotations by specialists and the neural network 

matched, red indicates areas where the neural network 

highlighted a benign (unnecessary) region, and blue in-

dicates areas where the neural network missed a malig-

nant region. 

 

Discussion 

During testing at the Department of Pathological Anat-

omy of the Belarusian State Medical University, the neu-

ral network successfully detected almost all associated 

areas of pathological tissue, though it made some errors 

in determining the sizes of these areas during segmen-

tation. In several cases, the network identified small, 

isolated lesions that were missed by the expert due to 

Experiment Group Model Name Number of  Parameters (M) F1 Score on Tiles Batches per Second 
(Validation) 256x256, class 3     

 unet-vgg16_bn 18,60 0,820 5,6 

 unet-edgenext_small 7,660 0,835 16,2 

 unet-resnetv2_50x1_bit 13,60 0,831 9,2 

 segformer-mit_b0 3,360 0,833 41,4 

 segformer-edgenext_small 5,330 0,837 31,3 

 segformer-resnetv2_50x1_bit 8,670 0,835 22,8 

512x512, class 3     

 segformer-mit_b0 3,360 0,828 9,3 

 segformer-edgenext_small 5,330 0,835 8,6 

 segformer-resnetv2_50x1_bit 8,670 0,834 6,3 

512x512, class 4     

 segformer-mit_b0 3,360 0,745 9,3 

 segformer-edgenext_small 5,330 0,769 8,6 

 segformer-resnetv2_50x1_bit 8,670 0,748 6,3 



 

 

7 16.10.2024 Original Article. SegFormer for Gleason Pattern Segmentation. V Ermakou, I Kosik, A Nedzvedz, R Karapetsian, T Liatkouskaya 

their size. Thus, the neural network demonstrated its 

potential effectiveness as a tool for preliminary research 

in screening mode, as well as an assistant in forming di-

agnostic conclusions. The model could be especially val-

uable in situations with limited access to qualified hu-

man specialists. 

 

Conclusion 

The use of artificial neural networks with the SegFormer 

architecture, supplemented by the EdgeNeXt (small var-

iant) subnet, not only provided high repeatability of seg-

mentation results but also significantly accelerated the 

diagnostic process, reducing the time for analyzing WSI 

scans to just a few minutes. Additionally, the use of 

deep learning improved the accuracy in identifying tu-

mor regions and their malignancy grades. This enables 

more precise predictions of disease progression and 

better treatment planning. 

Future research on the described neural network mod-

els aims to reduce errors in misidentifying seminal vesi-

cles as cancerous areas and to expand the annotated da-

taset with more samples containing Gleason grade 5 in 

order to train a specialized model. 
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